博客
关于我
【数学】数学归纳法
阅读量:418 次
发布时间:2019-03-06

本文共 716 字,大约阅读时间需要 2 分钟。

第一数学归纳法

第一数学归纳法可以概括为以下三步:

  • (1)归纳奠基:证明n=1时命题成立;
  • (2)归纳假设:假设n=k时命题成立;
  • (3)归纳递推:由归纳假设推出n=k+1时命题也成立。
  • 从而就可断定命题对于从所有正整数都成立。

第二数学归纳法(完整归纳法)

第二数学归纳法原理是设有一个与正整数n有关的命题,如果:

  • (1)归纳奠基:n=1,2时,命题成立;
  • (2)归纳假设:假设当n≤k(k∈N)时,命题成立;
  • (3)归纳递推:由此可推得当n=k+1时,命题也成立。
  • 那么根据①②可得,命题对于一切正整数n来说都成立。

例子

单调有界准则,数列递推,一定要递推关系,不是递推用不了

设a1=1,\(a_{n+1}+√(1-an)=0\),证明{an}收敛,并求\(lim_{n→∞}a_n\).

  • 若存在极限,设为A,则A+√(1-A)=0,A=(-1-√5)/2
    a1=1,a2=0,a3=-1,所以猜想{an}单调递减,有下界
  • 下面用第二数学归纳法证明{an}单调递减:(一般用于单调性
    • n=1,n=2时,a1=1,a2=0,a1>a2
    • 假设n≤k时,\(a_{k-1}>a_{k}\)成立
    • n=k+1时,\(a_{k+1}=-√(1-a_k)<-√(1-a_{k-1})=a_k成立\)
    • 所以{an}单调递减
  • 下面用第一数学归纳法证明{an}有下界:(一般用于上下界
    • n=1,a1=1>(-1-√5)/2成立
    • 假设n=k时,ak>(-1-√5)/2成立
    • n=k+1时,\(a_{k+1}=-√(1-a_k)\)>(-1-√5)/2
      1-ak<(3+√5)/2=(1+2√5+5)/4
      √(1-ak)<(1+√5)/2

转载地址:http://nftkz.baihongyu.com/

你可能感兴趣的文章
Navicat工具Oracle数据库复制 or 备用、恢复功能(评论都在谈论需要教)
查看>>
Navicat工具中建立数据库索引
查看>>
navicat工具查看MySQL数据库_表占用容量_占用空间是多少MB---Linux工作笔记048
查看>>
navicat怎么导出和导入数据表
查看>>
Navicat怎样同步两个数据库中的表
查看>>
Navicat怎样筛选数据
查看>>
Navicat报错connection is being used
查看>>
Navicat报错:1045-Access denied for user root@localhost(using passwordYES)
查看>>
Navicat控制mysql用户权限
查看>>
navicat操作mysql中某一张表后, 读表时一直显示正在载入,卡死不动,无法操作
查看>>
Navicat连接mysql 2003 - Can't connect to MySQL server on ' '(10038)
查看>>
Navicat连接mysql数据库中出现的所有问题解决方案(全)
查看>>
Navicat连接Oracle出现Oracle library is not loaded的解决方法
查看>>
Navicat连接Oracle数据库以及Oracle library is not loaded的解决方法
查看>>
Navicat连接sqlserver提示:未发现数据源名并且未指定默认驱动程序
查看>>
navicat连接远程mysql数据库
查看>>
Navicat通过存储过程批量插入mysql数据
查看>>
Navicat(数据库可视化操作软件)安装、配置、测试
查看>>
navigationController
查看>>
NB-IOT使用LWM2M移动onenet基础通信套件对接之APN设置
查看>>