博客
关于我
【数学】数学归纳法
阅读量:418 次
发布时间:2019-03-06

本文共 805 字,大约阅读时间需要 2 分钟。

数学归纳法是证明命题对所有正整数成立的一种重要技术。本文将介绍其两种主要形式,并通过实例展示其应用。

第一数学归纳法

第一数学归纳法通常分为三步:

  • 归纳奠基:验证当n=1时命题成立。
  • 归纳假设:假设当n=k时命题成立。
  • 归纳递推:由归纳假设推导出当n=k+1时命题也成立。
  • 通过这三步,可以证明命题对所有正整数n都成立。

    第二数学归纳法(完整归纳法)

    第二数学归纳法扩展了第一数学归纳法的应用范围:

  • 归纳奠基:验证当n=1和n=2时命题成立。
  • 归纳假设:假设当n≤k(k为正整数)时命题成立。
  • 归纳递推:由归纳假设推导出当n=k+1时命题也成立。
  • 通过这三步,可以证明命题对所有正整数n都成立。

    例子:数列收敛问题

    考虑数列{an}定义为:

    • a1 = 1
    • a_{n+1} + √(1 - an) = 0

    证明{an}收敛,并求lim_{n→∞}an。

    单调性证明

  • 初始验证

    • a1 = 1 > a2 = 0,满足a1 > a2。
  • 归纳假设

    • 假设对于某个k(k≥1),有ak-1 > ak。
  • 归纳递推

    • 计算a_{k+1} = -√(1 - ak)。
    • 由于ak < ak-1,√(1 - ak) < √(1 - ak-1),因此a_{k+1} > a_k。
  • 通过递推可知,数列{an}单调递减。

    下界证明

  • 初始验证

    • a1 = 1 > (-1 - √5)/2 ≈ -1.618。
  • 归纳假设

    • 假设对于某个k,ak > (-1 - √5)/2。
  • 归纳递推

    • 计算a_{k+1} = -√(1 - ak)。
    • 由于ak > (-1 - √5)/2,1 - ak < (3 + √5)/2 ≈ 1.618。
    • 因此,√(1 - ak) < √((3 + √5)/2) ≈ 1.272。
    • 所以,a_{k+1} = -√(1 - ak) > (-1 - √5)/2。
  • 通过递推可知,数列{an}下界为(-1 - √5)/2。

    转载地址:http://nftkz.baihongyu.com/

    你可能感兴趣的文章
    Nginx的location匹配规则的关键问题详解
    查看>>
    Nginx的Rewrite正则表达式,匹配非某单词
    查看>>
    Nginx的使用总结(一)
    查看>>
    Nginx的使用总结(三)
    查看>>
    Nginx的使用总结(二)
    查看>>
    Nginx的可视化神器nginx-gui的下载配置和使用
    查看>>
    Nginx的是什么?干什么用的?
    查看>>
    Nginx访问控制_登陆权限的控制(http_auth_basic_module)
    查看>>
    nginx负载均衡和反相代理的配置
    查看>>
    nginx负载均衡器处理session共享的几种方法(转)
    查看>>
    nginx负载均衡的5种策略(转载)
    查看>>
    nginx负载均衡的五种算法
    查看>>
    nginx转发端口时与导致websocket不生效
    查看>>
    Nginx运维与实战(二)-Https配置
    查看>>
    Nginx配置Https证书
    查看>>
    Nginx配置ssl实现https
    查看>>
    Nginx配置TCP代理指南
    查看>>
    Nginx配置——不记录指定文件类型日志
    查看>>
    nginx配置一、二级域名、多域名对应(api接口、前端网站、后台管理网站)
    查看>>
    Nginx配置代理解决本地html进行ajax请求接口跨域问题
    查看>>