博客
关于我
【数学】数学归纳法
阅读量:418 次
发布时间:2019-03-06

本文共 716 字,大约阅读时间需要 2 分钟。

第一数学归纳法

第一数学归纳法可以概括为以下三步:

  • (1)归纳奠基:证明n=1时命题成立;
  • (2)归纳假设:假设n=k时命题成立;
  • (3)归纳递推:由归纳假设推出n=k+1时命题也成立。
  • 从而就可断定命题对于从所有正整数都成立。

第二数学归纳法(完整归纳法)

第二数学归纳法原理是设有一个与正整数n有关的命题,如果:

  • (1)归纳奠基:n=1,2时,命题成立;
  • (2)归纳假设:假设当n≤k(k∈N)时,命题成立;
  • (3)归纳递推:由此可推得当n=k+1时,命题也成立。
  • 那么根据①②可得,命题对于一切正整数n来说都成立。

例子

单调有界准则,数列递推,一定要递推关系,不是递推用不了

设a1=1,\(a_{n+1}+√(1-an)=0\),证明{an}收敛,并求\(lim_{n→∞}a_n\).

  • 若存在极限,设为A,则A+√(1-A)=0,A=(-1-√5)/2
    a1=1,a2=0,a3=-1,所以猜想{an}单调递减,有下界
  • 下面用第二数学归纳法证明{an}单调递减:(一般用于单调性
    • n=1,n=2时,a1=1,a2=0,a1>a2
    • 假设n≤k时,\(a_{k-1}>a_{k}\)成立
    • n=k+1时,\(a_{k+1}=-√(1-a_k)<-√(1-a_{k-1})=a_k成立\)
    • 所以{an}单调递减
  • 下面用第一数学归纳法证明{an}有下界:(一般用于上下界
    • n=1,a1=1>(-1-√5)/2成立
    • 假设n=k时,ak>(-1-√5)/2成立
    • n=k+1时,\(a_{k+1}=-√(1-a_k)\)>(-1-√5)/2
      1-ak<(3+√5)/2=(1+2√5+5)/4
      √(1-ak)<(1+√5)/2

转载地址:http://nftkz.baihongyu.com/

你可能感兴趣的文章
Nature和Science同时报道,新疆出土四千年前遗骸完成DNA测序,证实并非移民而是土著...
查看>>
Nature封面:只低一毫米,时间也会变慢!叶军团队首次在毫米尺度验证广义相对论...
查看>>
Nat、端口映射、内网穿透有什么区别?
查看>>
Nat、端口映射、内网穿透有什么区别?
查看>>
nat打洞原理和实现
查看>>
NAT技术
查看>>
NAT模式/路由模式/全路由模式 (转)
查看>>
NAT模式下虚拟机centOs和主机ping不通解决方法
查看>>
NAT的两种模式SNAT和DNAT,到底有啥区别?
查看>>
NAT的全然分析及其UDP穿透的全然解决方式
查看>>
NAT类型与NAT模型详解
查看>>
NAT网络地址转换配置实战
查看>>
NAT网络地址转换配置详解
查看>>
navbar navbar-inverse 导航条设置颜色
查看>>
Navicat for MySQL 命令列 执行SQL语句 历史日志
查看>>
Navicat for MySQL 查看BLOB字段内容
查看>>
Navicat for MySQL笔记1
查看>>
Navicat for MySQL(Ubuntu)过期解决方法
查看>>
Navicat Premium 12 卸载和注册表的删除
查看>>
Navicat 导入sql文件
查看>>